
Embedded Rust, by example of RIOT-OS applications

Christian M. Amsüss <ca@etonomy.org>

2018-11-27

<ca@etonomy.org>

Embedded Devices

I 10kB – 1MB ROM

I 1kB – 100kB RAM

I Typical hardware: ARM Cortex-M3, eg. STM32

Embedded Devices

I allocation: static or on stack

I Someone needs to initialize the RAM

I CPU specific linker scripts

I Software shipped via hardware debugger or using a bootloader

Embedded Devices: On-board peripherals

I Clock(s)

I UARTs (eg. console)

I GPIO pins (eg. LEDs, buttons)

I SPI (eg. to access SD cards)

need to be set up, need drivers / file systems

Why Rust?

Why not?

Why Rust: My personal selection

I Fearless development

I Reusing code throughout the infrastructure

no std

Options 1a: Bare metal

I cortex-m-rt

I peripherals wrapped from svd2rust (eg. stm32f30x)

I device drivers (eg. stm32f30x-hal)

I board support crate (eg. f3)

See f3 crate for examples

https://crates.io/crates/cortex-m-rt
https://crates.io/crates/svd2rust
https://crates.io/crates/stm32f30x
https://crates.io/crates/stm32f30x-hal
https://crates.io/crates/f3
https://crates.io/crates/f3

Options 1b: RTFM

“Real-Time For The Masses”

I cortex-m-rtfm

I peripherals

I device drivers

I board support crate

More descriptive knowledge, fewer mutexes

https://crates.io/crates/cortex-m-rtfm

Options 2: Full Rust operating system

Tock

I Operating system written in Rust

I Trusted (cooperative) and untrusted (preemtive) processes

I Network stack is WIP

I Limited hardware support

Options 3: RIOT-OS

I Operating system written in C

I Trusted processes (cooperative or preemtive)

I Mature network stack

I Large community

I Good hardware support

Which to pick?

Does it matter?

Abstractions

embedded-hal

https://crates.io/crates/embedded-hal

embeded-hal traits

I GPIO

I SPI

I ADC

I I2C

I UART

I delays

I . . .

covers usage, not initialization

embedded-hal driver example: ENC28J60

impl<E , SPI , NCS , INT , RESET> Enc28j60 < . . .>
where

SPI : s p i : : T r a n s f e r<u8 , E r r o r=E> + . . . ,
NCS : OutputPin ,
INT : I n t P i n + I n p u t P i n ,
RESET : ResetPin ,

{
. . .

}

Traits in general

Emulating a different network stack

impl <’a> j n e t : : R e s i z e f o r
&’a mut r i o t s y s : : Pktsn ip<W r i t a b l e>

{
f n t r u n c a t e (&mut s e l f , l e n : u16) {

s e l f . r e a l l o c d a t a (l e n as u s i z e) . unwrap () ;
}

}

Translation at build time; no runtime overhead if concepts align

RIOT Operating System

https://riot-os.org

https://riot-os.org

Recap: RIOT-OS

I Operating system written in C

I Trusted processes (cooperative or preemtive)

I Mature network stack

I Large community

I Good hardware support

riot-sys

bindgen

many unsafe functions and raw pointers

https://crates.io/crates/riot-sys

riot-wrappers

safe wrappers

Mutext, RwLock: like in std::sync

embedded-hal implementations

https://crates.io/crates/riot-wrappers

Examples

Recap

I What are embedded devices?

I Bare metal development is possible

I Choice of operating systems

I embedded-hal & co (Embedded Rust WG)

I RIOT Operating System

I riot-sys and riot-wrappers

I Go try it!

Questions?

Thanks for your attention

Slides and more links on
http://christian.amsuess.com/presentations/2018/embedded-rust-riot/

http://christian.amsuess.com/presentations/2018/embedded-rust-riot/

