
Reverse engineering smart cards

Christian M. Amsüss

linuxwochen@christian.amsuess.com

http://christian.amsuess.com/

2010-05-06

linuxwochen@christian.amsuess.com
http://christian.amsuess.com/

Overview

objective understand smart card communication based on
sniffable communication

hardware standard card reader

software something that can talk to the smart card (typically
in emulator), cat /dev/usbmon0, some own tools

Smart card basics

Practical examples

Smart card basics

Practical examples

Common cards and readers

Low level

I shape and contacts defined in ISO 7816-1 and -2

I contacts for ground, power, reset, clock, and I/O

I serial communication

I ATR: answer to reset (up to 33 byte)

I protocol T=1 for sending and receiving byte string messages

High level

1 > 00 a4 00 00 02 01 02
2 < 90 00
3 > 00 b0 00 00 00
4 < 00 00 02 14 90 00

I command/response dialogue
I command = APDU, consisting of

I CLA (usually 00, other values indicate proprietary commands
or RFU)

I INS (instruction, eg. a4 = “Select File”)
I P1, P2 (arguments, eg 04 00 = “Select by DF”)
I length and data, depending on INS

I response, consisting of
I data, depending on INS
I SW1, SW2 (return code, eg 90 00 = “OK”)

Interfaces and drivers

CCID standard for USB card readers

PC/SC Windows API for smart cards

PCSC-Lite the same interface on Linux and OS X

OpenSC library focused on crypto (PKCS#x), brings some
own drivers

libchipcard library focused on not blocking unused devices

carddecoders my tools and example programs for smart card
reverse engineering, based on Python PCSC bindings
(http://christian.amsuess.com/tools/carddecoders/)

http://christian.amsuess.com/tools/carddecoders/

Smart card basics

Practical examples

Trying it out: pcsc-tools

I pcsc scan

I (g)scriptor

Sniffing on Linux

I Software that talks to the card can run in a VM (eg. ActiveX
applet)

I Linux lets you sniff USB communication using /dev/usbmon0;
output is CCID inside usbmon’s binary logging format

I Workflow:

I sudo cat /dev/usbmon0 > sniffing run 1.out
I Do something with the card
I Stop cat with ^C
I logdecoder -r sniffing run 1.out (from carddecoders)

1 > 00 a4 00 00 02 01 02
2 < 90 00
3 > 00 b0 00 00 00
4 < 00 00 02 14 90 00

Interpreting returned data: Encodings

I Look for numbers known to be read

I Big Endian: 02 00 = 512

I Binary Coded Decimal: 12 34 = 1 234

I ASCII: 31 32 33 34 = 1234

I Other creative encodings for dates etc.

1 > 00 a4 00 00 02 01 02
2 < 90 00
3 > 00 b0 00 00 00

4 < 00 00 02 14 90 00

e 5.32

Interpreting returned data: Encodings

I Look for numbers known to be read

I Big Endian: 02 00 = 512

I Binary Coded Decimal: 12 34 = 1 234

I ASCII: 31 32 33 34 = 1234

I Other creative encodings for dates etc.

1 > 00 a4 00 00 02 3 f 00
2 < 90 00
3 > 00 a4 00 00 02 00 02
4 < 90 00
5 > 00 b0 00 00 08

6 < 09 6 f 06 70 00 2 1 20 00 90 00

BLZ 12000

Interpreting returned data: Encodings

I Look for numbers known to be read

I Big Endian: 02 00 = 512

I Binary Coded Decimal: 12 34 = 1 234

I ASCII: 31 32 33 34 = 1234

I Other creative encodings for dates etc.

Interpreting returned data: Encodings

I Look for numbers known to be read

I Big Endian: 02 00 = 512

I Binary Coded Decimal: 12 34 = 1 234

I ASCII: 31 32 33 34 = 1234

I Other creative encodings for dates etc.

1 > 00 b2 01 04 00

2 < [. . .] 90 00 01 00 05 10 46 01 00 [. . .]
3 > 00 b2 02 04 00

4 < [. . .] 90 00 00 93 44 13 31 00 00 [. . .]
5 > 00 b2 03 04 00

6 < [. . .] 90 00 00 93 44 13 31 00 00 [. . .]

2010-01-05, 10:46 local time (day 5 of the year ’010)
2009-12-10, 13:31 local time (day 344 of the year ’009)

Exploring commands

I Some commands can be bent.

I Others can be bruteforced.

1 > 00 b0 00 00 08

2 < 09 6 f 06 70 00 21 20 00 90 00

According to ISO 7816, the last byte gives the number of bytes to
read. Let’s assume it works like POSIX’s read:

1 > 00 b0 00 00 00

2 < 09 6 f [. . .] 95 01 23 66 02 00 [. . .] 01 90 00

Exploring commands

I Some commands can be bent.

I Others can be bruteforced.

1 > 00 a4 00 00 02 d f 01

2 < 90 00

This was known to work. . . Let’s try this:

1 > 00 a4 00 00 02 d f 08

2 < 6a 00

No . . . One more?

1 > 00 a4 00 00 02 d f 09

2 < 6 f 14 84 07 a0 00 [. . .] 54 52 4 f 90 00

This works, and even sends data immediately.

Card state

I Smart card directory structure:

/ 3f 00.......................master file (MF)
00 02............. single file: “Read Binary”
df 01...................dedicated file (DF)

01 01

01 03....fixed records: “Read Record(n)”
df 09

00 01 . variable records: “Read Record(n)”

I File selection seems rather safe for experimenting

I More card state: authentication, challenge/response (limited
tries!)

Tools provided by carddecoders
I logdecoder

I carddecoders.reverse helpers

Decodes usbmon output to

1 > 00 a4 00 00 02 00 02
2 < 90 00
3 > 00 b0 00 00 08
4 < 09 6 f 06 70 00 21 20 00 90 00

. . . And generates Python code from it:

1 c a r d . t r a n s m i t (S e l e c t F i l e ([0 x00 , 0 x02]))
2 # OK
3 c a r d . t r a n s m i t (ReadBinary (l e n g t h =8))
4 # 09 6 f 06 70 00 21 20 00 , OK

Tools provided by carddecoders
I logdecoder
I carddecoders.reverse helpers

Find numbers in various encodings:

1 >>> c o n t a i n s n u m b e r (B y t e S t r i n g (
2 ”09 6 f 06 70 00 21 20 00”) , 12000)
3 number found i n BCD at o f f s e t 5 . 5 b y t e s
4 >>> c o n t a i n s n u m b e r (B y t e S t r i n g (
5 ”09 6 f 06 70 00 21 20 00”) , 1648)
6 number found i n b i g e n d i a n e n c o d i n g e n d i n g
7 at 4 . 0 b y t e s

Find length indicators:

1 >>> b a c k w a r d l e n g t h (B y t e S t r i n g (
2 ”70 3 c 5 f [. . .] 5 f 28 02 00 40”))
3 i n d e x 1 : 60 r e m a i n i n g
4 i n d e x 5 9 : 2 r e m a i n i n g

Further reading

I Introduction to Smart Cards
http://www.smartcard.co.uk/tutorials/sct-itsc.pdf

I Overview over ISO 7816
http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816.aspx

I Smartcard protocol sniffing (hardware side)
http://events.ccc.de/congress/2007/Fahrplan/events/2364.en.html

http://www.smartcard.co.uk/tutorials/sct-itsc.pdf
http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816.aspx
http://events.ccc.de/congress/2007/Fahrplan/events/2364.en.html

	Smart card basics
	Practical examples

